Recent advances in safety-critical risk-aware control are predicated on apriori knowledge of the disturbances a system might face. This paper proposes a method to efficiently learn these disturbances online, in a risk-aware context. First, we introduce the concept of a Surface-at-Risk, a risk measure for stochastic processes that extends Value-at-Risk -- a commonly utilized risk measure in the risk-aware controls community. Second, we model the norm of the state discrepancy between the model and the true system evolution as a scalar-valued stochastic process and determine an upper bound to its Surface-at-Risk via Gaussian Process Regression. Third, we provide theoretical results on the accuracy of our fitted surface subject to mild assumptions that are verifiable with respect to the data sets collected during system operation. Finally, we experimentally verify our procedure by augmenting a drone's controller and highlight performance increases achieved via our risk-aware approach after collecting less than a minute of operating data.
translated by 谷歌翻译
This paper proposes an algorithm for motion planning among dynamic agents using adaptive conformal prediction. We consider a deterministic control system and use trajectory predictors to predict the dynamic agents' future motion, which is assumed to follow an unknown distribution. We then leverage ideas from adaptive conformal prediction to dynamically quantify prediction uncertainty from an online data stream. Particularly, we provide an online algorithm uses delayed agent observations to obtain uncertainty sets for multistep-ahead predictions with probabilistic coverage. These uncertainty sets are used within a model predictive controller to safely navigate among dynamic agents. While most existing data-driven prediction approached quantify prediction uncertainty heuristically, we quantify the true prediction uncertainty in a distribution-free, adaptive manner that even allows to capture changes in prediction quality and the agents' motion. We empirically evaluate of our algorithm on a simulation case studies where a drone avoids a flying frisbee.
translated by 谷歌翻译
本文使用总变化距离歧义集研究了分布强大的模型预测控制(MPC)的问题。对于具有加性干扰的离散时间线性系统,我们为MPC优化问题提供有条件的价值重新印度,该重新质量在预期的成本和机会限制下在分配上具有稳定性。分布稳健的机会约束被过度评估,以减轻计算负担的更简单,收紧的机会约束。数值实验支持我们的概率保证和计算效率的结果。
translated by 谷歌翻译
机器人对未知环境的探索从根本上是一个不确定性下决策的问题,在这种情况下,机器人必须考虑传感器测量,本地化,动作执行以及许多其他因素的不确定性。对于大规模勘探应用,自治系统必须克服依次确定哪些环境区域的挑战,可以探索哪些区域,同时安全地评估与障碍和危险地形相关的风险。在这项工作中,我们提出了一个风险意识的元级决策框架,以平衡与本地和全球勘探相关的权衡。元级决策是基于经典的等级覆盖计划者,通过在本地和全球政策之间进行切换,其总体目标是选择最有可能在随机环境中最大化奖励的政策。我们使用有关环境历史,穿术风险和动力学约束的信息,以推理成功执行本地和全球政策之间的策略执行的可能性。我们已经在模拟和各种大规模现实世界硬件测试中验证了解决方案。我们的结果表明,通过平衡本地和全球探索,我们可以更有效地显着探索大规模的环境。
translated by 谷歌翻译
本文示出了一般类空中机械手的动态,包括具有任意K型铰接式操纵器的废隔多转子底座,差异平坦。在破裂对称下的拉格朗日减少方法产生了缩小的运动方程,其关键变量:质量线性线性动量,车辆偏航角,操纵子相对接头角度成为扁平输出。利用平坦度理论和推力输入的二阶动态延伸,我们通过有效的相对程度将空中机械手的机制转变为其等效的微观形式。使用这种平坦度变换,在控制Lyapunov函数(CLF-QP)框架内提出了一种二次编程的控制器,并且在仿真中验证了其性能。
translated by 谷歌翻译
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task. Here, we describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to address the problem of generalization for mitosis detection in images of hematoxylin-eosin-stained histology slides under high variability (scanner, tissue type and species variability). Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation with a training set enriched with hard negative examples and automatically selected negative examples from the unlabeled part of the challenge dataset. To optimize the performance of our models, we investigated a hard negative mining regime search procedure that lead us to train our best model using a subset of image patches representing 19.6% of our training partition of the challenge dataset. Our candidate model ensemble achieved a F1-score of .697 on the final test set after automated evaluation on the challenge platform, achieving the third best overall score in the MIDOG 2022 Challenge.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Vocal Bursts -- short, non-speech vocalizations that convey emotions, such as laughter, cries, sighs, moans, and groans -- are an often-overlooked aspect of speech emotion recognition, but an important aspect of human vocal communication. One barrier to study of these interesting vocalizations is a lack of large datasets. I am pleased to introduce the EmoGator dataset, which consists of 32,040 samples from 365 speakers, 16.91 hours of audio; each sample classified into one of 30 distinct emotion categories by the speaker. Several different approaches to construct classifiers to identify emotion categories will be discussed, and directions for future research will be suggested. Data set is available for download from https://github.com/fredbuhl/EmoGator.
translated by 谷歌翻译